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ABSTRACT

The gradient and curvature of the Parker spiral interplanetary magnetic field give rise to curvature

and gradient guiding centre drifts on cosmic rays. The plasma turbulence present in the interplanetary

space is thought to suppress the drifts, however the extent to which they are reduced is not clear. We

investigate the reduction of the drifts using a new analytic model of heliospheric turbulence where the

dominant 2D component has both the wave vector and the magnetic field vector normal to the Parker

spiral, thus fulfilling the main criterion of 2D turbulence. We use full-orbit test particle simulations of

energetic protons in the modelled interplanetary turbulence, and analyse the mean drift velocity of the

particles in heliolatitude. We release energetic proton populations of 10, 100 and 1000 MeV close to Sun

and introduce a new method to assess their drift. We compare the drift in the turbulent heliosphere

to drift in a configuration without turbulence, and to theoretical estimates of drift reduction. We find

that drifts are reduced by a factor 0.2-0.9 of that expected for the heliospheric configuration without

turbulence. This corresponds to a much less efficient suppression than what is predicted by theoretical

estimates, particularly at low proton energies. We conclude that guiding centre drifts are a significant

factor for the evolution of cosmic ray intensities in the heliosphere including the propagation of solar

energetic particles in the inner heliosphere.

Keywords: Sun: particle emission - Sun: heliosphere - magnetic fields - turbulence - methods: numerical

1. INTRODUCTION

The heliosphere is traversed by different populations

of energetic charged particles, the generally termed cos-

mic rays (CRs), with sources varying from the Sun

and interplanetary space to outside the heliosphere in

galactic and extragalactic sources. The propagation

of these particles is guided by the interplanetary mag-

netic field (IMF), which has the macroscopic shape of

an Archimedean spiral, the Parker spiral, due to the

magnetic field, originating from the rotating Sun, being

frozen in the solar wind plasma (Parker 1958).

In the simplest approximation, the CRs propagate

parallel to the Parker spiral magnetic field. However,

the magnetic field is curved, and its magnitude depends

on the heliocentric distance, thus the CRs are subject to

gradient and curvature guiding centre drifts (e.g. Burns

& Halpern 1968). The large-scale drifts influence the

modulation of the intensities of galactic cosmic rays

(GCRs) that propagate through the outer heliosphere

to be observed at Earth (e.g. Jokipii et al. 1977). They

also cause solar energetic particles (SEPs) to drift in

latitude and longitude, and lose energy (e.g. Dalla et al.

2013; Marsh et al. 2013; Dalla et al. 2015).

The large-scale IMF is superposed by a fluctuating

component, which is due to the solar wind turbulence.

This turbulent component causes field line random-

walk resulting in CRs spreading stochastically across the
large-scale average field. Also the velocity vector of the

CRs is affected by the turbulence, which results in scat-

tering of the CRs along the random-walking field lines

(Parker 1965; Jokipii 1966).

The interplay between the effects of turbulence and

the drift motion due to large scale gradients and curva-

ture has gained significant attention, however, details of

this interaction are not clear. For GCRs, within modu-

lation models large-scale drifts need to be suppressed in

order for the models to be able to reproduce the obser-

vations (e.g. Potgieter et al. 1989). Several theoretical

works have suggested that turbulence reduces large-scale

drifts (e.g. Gleeson 1969; Forman et al. 1974; Bieber

& Matthaeus 1997; Giacalone et al. 1999; Engelbrecht

et al. 2017; van den Berg et al. 2021), and reduction of

drifts has found some support from full-orbit test parti-

cle simulations of charged particles in synthetic turbu-

ar
X

iv
:2

41
2.

13
89

5v
1 

 [
as

tr
o-

ph
.S

R
] 

 1
8 

D
ec

 2
02

4

http://orcid.org/0000-0002-7719-7783
http://orcid.org/0000-0002-7837-5780
Song Yongliang

Song Yongliang

Song Yongliang



2

lent magnetic fields (e.g. Giacalone et al. 1999; Candia &

Roulet 2004; Minnie et al. 2007; Tautz & Shalchi 2012).

However, these theoretical works and simulation studies

have used either a constant or gradient-only background

magnetic field configuration: thus, possible suppression

of CR drifts in a realistic heliospheric context has not

been probed.

In this work, we investigate the effect of turbulence on

guiding centre drifts of solar energetic particles (SEPs)

by means of 3D test particle simulations including tur-

bulence superposed on a Parker spiral IMF. We make

use of our newly-developed analytical model of com-

posite plasma turbulence in the Parker spiral helio-

spheric configuration (Laitinen et al. 2023a). We com-

pare the latitudinal drift of SEPs in the turbulent helio-

sphere to that in IMF without turbulence (Marsh et al.

2013; Dalla et al. 2013). We compare simulation results

with the predictions of drift reduction models (Bieber &

Matthaeus 1997; Engelbrecht et al. 2017), and discuss

the implications of our results on the theoretical models

of drift reduction.

2. METHODS

2.1. Theoretical calculations of drift reduction

Stochastic transport models of CRs typically include

the macroscopic drift of the charged particles in the dif-

fusion tensor that is used to describe the diffusive propa-

gation of cosmic rays due to plasma turbulence. Within

the assumption of isotropic particle velocity distribu-

tion, the large-scale drift velocity vd of a charged parti-

cle due to gradient and curvature of the magnetic field

B can be written in form

vd =
pv

3q
∇× B

B2
, (1)

where p, v and q are the moment, speed and charge

of the particle, respectively (e.g. Rossi & Olbert 1970).

This can be written as

vd = ∇×
(v
3
rLêB

)
= ∇× κAêB , (2)

where rL = p/(qB) is the particle’s Larmor radius, êB
is the unit vector along the magnetic field B, and κA =
v
3rL is the so-called antisymmetric diffusion tensor. If

we consider this form in conjunction with the diffusive

flux term in transport equations, ∇·(κ ·∇f) = ∂iκij∂jf ,

where κ is the diffusion tensor defined in a coordinate

system where z-axis is aligned along the magnetic field,

êz ∥ êB , the curl in Equation (2) is equivalent to in-

cluding antisymmetric off-axis diffusion tensor elements

elements κxy = −κyx = κA.

In order to calculate the effect of the turbulence

on drifts, Bieber & Matthaeus (1997) considered

the Taylor-Green-Kubo formalism (Taylor 1922; Green

1951; Kubo 1957), where the diffusion tensor is given as

κij =

∫ ∞

0

dt ⟨vj(t0)vi(t0 + t)⟩ =
∫ ∞

0

dtRij(t) (3)

where ⟨⟩ represents ensemble average, and

Rij(t) = ⟨vj(t0)vi(t0 + t)⟩ (4)

is a correlation function that is statistically indepen-

dent of t0. For a (positively) charged particle in uni-

form magnetic field, the velocity components are vx =

v⊥ cos(Ωt + ϕ0), vy = −v⊥ sin(Ωt + ϕ0) and vz = con-

stant, which results in correlation functions

Rxx = Ryy =
1

2
v2⊥ cos(Ωt) (5)

Ryx = −Rxy =
1

2
v2⊥ sin(Ωt), (6)

where Ω = v/rL is the gyrofrequency of the particle.

Bieber & Matthaeus (1997) assumed that because the

turbulence disturbs the gyration of the charged particles,

the correlation between the velocity components should

include a decay term as follows:

Ryx = −Rxy =
1

2
v2⊥ sin(Ωt) e−t/τ (7)

where τ is the decorrelation timescale of the gyration.

Using this expression for the correlation functions, by

integration they obtained the diffusion coefficients

κxx = κyy =
vrL
3

Ωτ

1 + Ω2τ2
(8)

κxy = −κyx ≡ κA =
vrL
3

Ω2τ2

1 + Ω2τ2
(9)

where an average over the pitch angle has been carried

out. Comparing this form to the definition of κA in

Equation (2), we see that the decorrelation of the parti-

cle velocity at time-scale τ reduces the drift coefficient

by a factor

fs =
Ω2τ2

1 + Ω2τ2
, (10)

termed the drift reduction factor.

The question then is what is the correct timescale for

the decorrelation of the particle gyromotion to be used

to evaluate fs? Bieber & Matthaeus (1997) approached

the question by assuming that the gyromotion decorre-

lates when the particles, following diffusing field lines,

have drifted the distance of their gyroradius from their

original position across the mean field direction. Follow-

ing this argument, they arrived at an expression

Ωτ =
2rL

(3D⊥)
, (11)
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where D⊥ is the magnetic field line diffusion coefficient.

Thus, the drift reduction coefficient depends on the

turbulence amplitude, its associated length scales (e.g.

Matthaeus et al. 1999), as well as the particle energy

and mass-charge ratio.

Using a similar approach, Engelbrecht et al. (2017)

and van den Berg et al. (2021) considered that the rele-

vant cross-field scale for the decorrelation should be the

perpendicular mean free path of the particles, λ⊥. They

further assumed that the particle cross-field velocity is

determined by the random-walk of the field lines, arriv-

ing at

Ωτ =
rL
λ⊥

B0

dB
, (12)

where dB2 is the variance of the turbulence.

It should be noted that the derivation of Equation (9)

does not involve large-scale gradients: it is conducted

with the assumption of uniform magnetic field. Thus,

it does not describe the large-scale drifts or their reduc-

tion, rather it describes asymmetric flux of particles due

to their disturbed gyration.

It should also be noted that in the limit τ → ∞, κA

cannot be defined by this approach, as the integral in

Equation (3) is not defined.

2.2. Test particle simulations

The drift reduction due to turbulence has been studied

by several researchers by means of full-orbit test particle

simulations (e.g. Giacalone et al. 1999; Candia & Roulet

2004; Minnie et al. 2007; Tautz & Shalchi 2012). These

works typically superpose homogeneous turbulence on

a constant background magnetic field, a configuration

that is similar to that used in the theoretical models pre-

sented in Section 2.1. In such a configuration, measuring

a macroscopic drift of a particle population cannot be

used to analyse drift or its reduction, as the macroscopic

drift requires a gradient or curvature in the macroscopic

field. Instead, these studies use the approach suggested

by Giacalone et al. (1999), where κij = ⟨vi∆rj⟩, with vi
and ∆rj the i and j components, respectively, of veloc-

ity and spatial displacement normal to the background

magnetic field. Only Minnie et al. (2007) used simula-

tions where the background magnetic field has a gradi-

ent, and macroscopic drifts are present. We shall return

to these simulations in Section 4.

For this work, we analyse IMF guiding centre drift by

integrating the full equation of motion for charged parti-

cles in the the heliosphere via the simulation framework

developed by Dalla & Browning (2005) and Marsh et al.

(2013). The IMF is formed of a Parker spiral magnetic

field superposed with turbulent fluctuations as presented

in Laitinen et al. (2023a). It should be noted that in the

present work, the model is monopolar, in form

B = AB0
r20
r2

[
êr −

r

a
êϕ

]
(13)

where A is the sign of the magnetic field, a =

vsw/(Ω⊙ sin θ), with vsw and Ω⊙ the solar wind speed

and solar rotation rate respectively, B0 ≈ B(r0) when

r0 << a, with r0 a reference location close to the Sun,

and θ the colatitude. Thus, our present work does not

include the effects of the heliospheric current sheet (Bat-

tarbee et al. 2017, 2018). We denote the polarity of the

IMF with B+ for IMF pointing away from the Sun, with

A = 1, and B- for IMF pointing towards the Sun, with

A = −1. From the equation of the magnetic drifts,

Eq. (1), it is clear that the drift velocity changes its di-

rection with different IMF polarities. We note that the

model used in the present work also does not include the

convectional or turbulent electric field, thus the corota-

tion drift and deceleration of CRs are not present in the

simulations.

For the turbulence in our model, we use the helio-

spheric analytic 2D-slab composite turbulence model

model described in Laitinen et al. (2023a). The model

consists of 2D turbulence component which is transverse

with respect to the Parker spiral, and has the fluctuat-

ing magnetic field δB normal to the Parker spiral every-

where. The 2D component is complemented with weaker

slab-like component, which is dominated by radial slab

modes close to the Sun, and azimuthal at larger dis-

tances. The turbulence is realised as a sum of Fourier

modes following the approach of Giacalone & Jokipii

(1999), with 128 each of slab and 2D-mode waves which

are used to calculate the magnetic field at the parti-

cle location. Note that this approach differs from the

approaches where the turbulent magnetic field is pre-

calculated on a 3-dimensional grid using a Fourier trans-

form: in such case, the simulation domain is limited by

the largest scales included in the turbulence spectra. We

refer to simulations performed with this model as ”tur-

bulence” model throughout the manuscript.

We compare results from the turbulence model to he-

liospheric particle simulations without superposed tur-

bulence. To do that, we run simulations using the ap-

proach presented in Marsh et al. (2013), where the par-

ticles are traced with full 3D test particle simulations in

Parker spiral geometry with B given by Equation (13)

without turbulent field-line meandering. In these sim-

ulations, the effect of the turbulence on the particles is

modelled as scattering events where the particle’s veloc-

ity vector is scattered at random times, parameterised

by a constant parallel scattering mean free path, λ∥
(Marsh et al. 2013). We refer these simulations as the

”scatter” model. Note that cross-field scattering is not
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explicitly implemented in the scatter model: the only

cross-field motion is caused by large-scale drifts and the

random-walk of the particle gyrocentre as the velocity

vector is randomised. For the scatter and turbulence

approaches to be comparable, we have used a parallel

mean free path according to standard quasi-linear theory

(SQLT) (e.g. Jokipii 1966) derived from the turbulence

model parameters used in the turbulence runs. As the

obtained SQLT mean free path varies with radial dis-

tance from the Sun, we average its value over distances

from 2r⊙ to 1 au.

In this work, we simulate energetic protons at differ-

ent proton energies and interplanetary space conditions.

For each parameter set, we simulate 1,000 particles in

100 different turbulence realisations, with the turbulence

mode phases and polarisations different in each realisa-

tion, thus a total of 100,000 particles for each simulation

set. The particles are injected at 2r⊙ heliocentric dis-

tance at the solar equator, with isotropic velocity dis-

tribution, and their propagation in the heliosphere is

traced for 48 hr. The parameters of the eight simulation

sets are given in Table 1, with each set including both a

turbulence and a scatter simulation run (column 5). We

simulate energetic protons from non-relativistic to rela-

tivistic energies, at 10, 100 and 1000 MeV (column 2 in

Table 1), for the two polarities of the monopolar IMF

(column 3). The relative turbulence amplitude at 1 au,

used in the turbulence simulations, is given in column 7

of Table 1, with the corresponding scattering mean free

path, used in the scattering simulations, given in col-

umn 6. Other turbulence parameters are as in Laitinen

et al. (2023b), briefly described in Appendix A.

2.3. Determining the latitudinal drift velocity

Previous studies have derived drift coefficients in a

uniform background magnetic field with homogeneous

turbulence: in this type of configuration the coefficients

do not depend on the particle location, thus the analysis

methods can average over particles over the entire sim-

ulation volume. In our heliospheric configuration, how-

ever, use of such methods is not possible: turbulence

characteristics, and thus also the particle transport pa-

rameters, depend significantly on heliospheric location

(e.g. Chhiber et al. 2017). Drift velocities also vary sig-

nificantly with particle location (e.g. Dalla et al. 2013).

Thus, the coefficients obtained by averaging over the

simulation volume (by tracing particles through the en-

tire heliosphere) would not represent the coefficients at

any given location, but an average value over the whole

heliosphere. To alleviate this issue, and produce coeffi-

cients for our turbulence and scatter particle simulations

that can be compared with each other, we have devel-
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Figure 1. Panel (a): The distribution of the latitudinal
displacements ∆θ between the first and last 1-au crossings of
100 MeV protons (simulation set 4) as a function of the time
∆t between the first and last crossings, ensemble-averaged
over all turbulence realisations (Note that the interval of
∆θ ∈ [−1, 1] on the vertical axis is linear). In panel (b),
the red crosses in the top panel show ∆θ, and the dashed
line the theoretical ∆θ due to guiding centre drifts (see Ap-
pendix B). Panel (c) shows the drift velocity vdθ in units of
the theoretical velocity.

oped a new methodology to analyse the drift experienced

by the particles.

Our method is based on the fundamental difference

between the effects of the two distinct physical pro-

cesses (turbulence and drift) on the particle distribu-

tion. We initialise our particles around the solar equa-

tor, at θ = π/2. Our turbulence model is symmetric in

latitude, thus any asymmetry in the distribution in lati-

tude with respect to the solar equator cannot be caused

by the stochastic turbulence: without drift, the mean of

the particle distribution in colatitude would remain at

θ = π/2. On the other hand, in a unipolar field drift

in heliolatitude causes particles to propagate systemati-
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Table 1. The parameters of the simulation runs. The first column gives the set identifier for the runs, with the rows for the
scatter and turbulence simulation runs within the sets indicated in column 5. The second column shows the proton energy, third
the magnetic field polarity and fourth the theoretical vdθ theor, as calculated in Appendix B. The sixth and seventh columns give
the parallel scattering mean free path and turbulence variance at 1 au heliocentric distance, used for the scatter and turbulence
simulations, respectively. The eighth and ninth columns give ⟨vdθ⟩r and the uncertainty σ, obtained from the distributions
shown in Figure 3.

Set Ek [MeV] Pol vdθ theor [km s−1]] sim λ∥ [au] dB2/B2 ⟨vdθ⟩r [km s−1]] σ [km s−1]]

1 10 B+ 17. scat 0.37 – 14. 0.38

turb – 0.60 3.5 19.

2 10 B- 17. scat 0.37 – -14. 0.39

turb – 0.60 -4.7 17.

3 100 B+ 160. scat 1.6 – 110. 2.2

turb – 0.20 110. 81.

4 100 B+ 160. scat 0.55 – 120. 2.3

turb – 0.60 82. 64.

5 100 B+ 160. scat 0.17 – 130. 3.3

turb – 2.00 40. 58.

6 100 B- 160. scat 0.55 – -120. 2.6

turb – 0.60 -82. 53.

7 1000 B+ 1300. scat 0.87 – 840. 18.

turb – 0.60 780. 300.

8 1000 B- 1300. scat 0.87 – -840. 18.

turb – 0.60 -800. 300.

cally either northwards or southwards depending on the

magnetic field polarity (A in Equation (13) (Dalla et al.

2013). Thus, we consider the broadening of the par-

ticle distribution to be caused by turbulence, and any

changes in the mean latitude of the particle distribution

to be caused by large-scale drifts.

To analyse the latitudinal propagation of a particle, we

consider its first and last crossings of the 1 au sphere,

taking place at times tf and tl, respectively. The change

in colatitude between the two crossing is

∆θ = θl − θf (14)

and the time interval between the crossings is

∆t = tl − tf . (15)

The latitudinal velocity of the particle averaged between

the first and last 1 au sphere crossings, vdθ, can be then

defined as

vdθ = re
∆θ

∆t
, (16)

where re = 1au. It should be noted that vdθ does

not represent the 1 au value of the latitudinal velocity:

rather, it is the average latitudinal velocity of the parti-

cle over its entire trajectory in the heliosphere between

tf and tl.

We use the interval between the first and the last

crossings instead of interval between consecutive cross-

ings in our definitions to avoid giving larger statistical

weight to individual particles that cross the 1-au sphere

multiple times. Our method also ignores the initial prop-

agation of the particles in the near-Sun region where

the stochastic spreading of the particle population is

strong: as discussed in Laitinen et al. (2023a), the field-

line meandering in such an environment can cause large

local deviations. We further exclude particles for which

∆t < 100 s, large compared to Ω = 0.49 s−1 at 1 au (for

non-relativistic particles), to avoid effects of the Larmor

radius of the particles on ∆θ.

Figure 1 (a) shows the distribution of ∆θ values for

100 MeV protons (filled contours). Here, the entire pop-

ulation of 100,000 protons over the 100 turbulence re-

alisations is used. The particles with small ∆t have

returned to 1 au soon after their initial crossing, and

have subsequently escaped to further distances without

returning. Particles with larger ∆t display a wider dis-

tribution in ∆θ. This is due to the particles decoupling

from their original meandering field line to different field

lines at later times. This stochastic process can result

in a particle’s final crossing of the 1-au sphere to be up

to 90◦ from their initial crossing colatitude.

To investigate the temporal evolution of ∆θ, we divide

the ∆t axis into bins and calculate median values of ∆θ

over the particle population in each bin, indicated as
∆θ(∆t). We show ∆θ as function of ∆t in Figure 1 (b)

with red crosses. As can be seen, ∆θ increases system-
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Figure 2. The drift velocity vdθ (in units of the theoretical drift velocity, Equation B3)) of 100 MeV protons in moderate
turbulence for (a) B+ -polarity (simulation set 4) and (b) B- -polarity (simulation set 6) protons as a function of time interval
∆t between the first and last 1-au crossing.

atically, demonstrating a macroscopic, systematic drift

of the particle population in time.

We compare the drift in Figure 1 (b) to the theoretical

drift. The theoretical drift velocity (Equation (B3)) is

given in column 4 of Table 1, following the derivation

presented in Appendix B. The dashed black curve in

Figure 1 shows change in colatitude of a particle obeying

the theoretical drift as

∆θtheor = vdθ theor∆t. (17)

As can be seen, the ∆θ follows the trend of the theoret-

ical prediction well, however at slightly lower values.

To further analyse the drift in velocity units, we cal-

culate the median drift speed vdθ(∆t) and present it

in units of vdθ theor in Figure 1 (c). As can be seen,

vdθ(∆t) is of the same order as vdθ theor, but lower in

magnitude, reaching its maximum value of 0.85 vdθ theor

at ∆t ≈ 10, 000 seconds.

It should be emphasised that the wide, temporally

widening extent of the ∆θ distribution seen in Fig-

ure 1 (a) cannot be considered as an uncertainty of ∆θ.

The extent of the distribution arises from the decou-

pling of the particles from the stochastically meandering

field lines: it is a measurable quantity that describes the

turbulence-induced stochastic particle propagation. The

wide extent is a result of a physical process that is dis-

tinct from large-scale systematic drifts which are caused

by large-scale gradients and curvature of the Parker spi-

ral.

In the next section, we use our new methodology to

investigate the dependence of the drift velocity on the

particle energy and turbulence amplitude, as well as its

temporal evolution and variation across different turbu-

lence realisations. For the latter, it is useful to condider

the distribution of the median drift velocities over the

100 realisations. The median drift velocity over realisa-

tion r, and over all ∆t values, is indicated as ⟨vdθ⟩r.

3. RESULTS

3.1. Drifts from test particle simulations

We first investigate the temporal evolution of vdθ(∆t)

in Figure 2 for the simulation sets 4 and 6, in panels (a)

and (b) respectively, in units of the theoretical drift ve-

locity. In the Figure, the cyan and magenta symbols de-

pict vdθ(∆t) for the turbulence simulations, and the solid

cyan curve the same for the scatter simulation sets 4

and 6. Note that the binning in ∆t is linear unlike in

Figure 1 (c) where we used logarithmic binning.

As can be seen, both the turbulence and scatter sim-

ulations attain vdθ(∆t) values with the same sign as

the polarity used in the simulation set. The drift from

the scatter simulations is initially of the same order as

vdθ,theor (i.e., values 1 and −1 in Figure 2 (a) and (b),

respectively), however it decreases for larger ∆t. This

is caused by the particle propagation not being limited

to the vicinity of 1 au where the theoretical drift veloc-

ity is calculated. As the particles propagate and spread

into the inner and outer heliosphere before returning

to 1 au, they sample heliocentric distances where the

angular drift velocity is smaller than at 1 au (see Fig-

ure 7 (b)). As a result, their integrated drift velocity be-

tween the first and last crossings are smaller than 1 au
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values. This effect is evident in that for the particles

with larger ∆t, the deviation of the drift speed from

the theoretical value at 1 au is progressively larger. For

further details, see Appendix B).

The vdθ(∆t) from turbulent simulations is smaller in

magnitude than the one from scatter simulations, and

likewise is smaller for larger ∆t. Thus, it appears that

some reduction of drift is present in the turbulence sim-

ulations as compared to the scatter simulations. There

is considerable statistical fluctuations, due to different

travel histories of the particles within the simulations.

0.00

0.15
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0.45
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F

(a) 10 MeV
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0.4

0.8

1.2

PD
F

(b) 100 MeV

2 1 0 1 2
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(c) 1000 MeV B+
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Figure 3. Probability density of ⟨vdθ⟩r, the medians
of the vdθ of the 100 different turbulence realisations, for
dB2/B2 = 0.6 at 1 au for (a) 10 MeV, (b) 100 MeV and
(d) 1000 MeV protons, in units of vdθ,theor. The cyan and
magenta curves show ⟨vdθ⟩r distribution for B+ and B- po-
larities, respectively. The crosses and horizontal error bars
show the median and uncertainty for the turbulence simula-
tions, and the filled circles show the median for the scatter
simulations.

In order to evaluate the effect of different turbulence

realisations on the drift velocity obtained from our sim-

ulations, we show the distributions of ⟨vdθ⟩r in Figure 3

for the three proton energies used in this study for the

moderate turbulence case of dB2/B2 = 0.6 at 1 au, with

the positive (B+) and negative (B-) magnetic polarity

simulations shown by cyan and magenta symbols and

lines, respectively. The crosses and horizontal error bars

show the ensemble median ⟨vdθ⟩r and the standard devi-

ation σ over the distribution of 100 ⟨vdθ⟩r values for the

turbulence realisations. The values are given in Table 1

in the last two columns on lines denoted ”turb”.

For comparison, we show in Figure 3 the ⟨vdθ⟩r for the
scatter simulations with filled circle symbols. The stan-

dard deviations of the scatter simulations are smaller

than the symbol size. The value of vdθ,scat and the cor-

responding standard deviation are shown in the last two

columns of Table 1 on lines denoted ”scat”.

As we can see in Figure 3, the distributions of me-

dian drifts for the B+ and B- polarities have different

signs, and for the higher energies the vdθ,turb distribu-

tions for the different polarities are clearly distinct. For

the 10 MeV protons, the distributions do overlap signif-

icantly, however the median values of the distributions

differ and are of different sign, as expected. In addi-

tion, we performed a Kolmogorov-Smirnoff test which

confirmed that the B+ and B- distributions are statis-

tically different even for the 10 MeV protons. In all the

cases depicted in Figure 3 and in Table 1, the drift ob-

tained with the scatter simulations is larger than ⟨vdθ⟩r.
The theoretical drift velocity, shown in column 4 of

Table 1, is of similar order as the scatter simulation drift,

however there are some differences. This is due to the

fact that the theoretical value is valid only for particles

at 1 au, whereas the simulated particles propagate in

the IMF where the drift rate varies with heliocentric

distance (see Figure 7 (b)) and colatitude.

3.2. Drift reduction factor

To evaluate the effect of the turbulence on drifts, we

compare vdθ(∆t) obtained with turbulence simulations

with the drift expected without turbulence. As dis-

cussed above, vdθ,theor calculated in Appendix B is lim-

ited to a specific heliospheric location. For this reason,

we choose the drift from the scatter simulations as the

reference drift without turbulence. This assumption can

be justified by considering the form of Equation (10)

which approaches unity for Ωτ ≫ 1. For the scatter

model, we can consider the decorrelation time scale τ

to be equal to the parallel scattering time tscat = λ∥/v

(Marsh et al. 2013), which for all of our parameters is

much larger than 1/Ω.
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Figure 4. (a) vdθ, in units of vdθ,theor, of 100 MeV protons (simulation sets 4) as a function of ∆t with symbols showing the
turbulence simulations and cyan line the scatter simulations. The dashed black line shows the result of fitting Equation (18).
(b) The number of particles corresponding the vdθ,scat in (a), used as weights for fitting Equation (18).

Under this assumption, we obtain the drift reduc-

tion coefficient by fitting the time-dependent vdθ,turb,

as shown in Figure 2 as

vdθ,turb = fs vdθ,scat (18)

where fs is the drift reduction factor. We note that

the number of crossings also depends on ∆t, thus we

fit Equation (18) weighting the turbulence simulation

points with the number of particles. We perform the fit

using the curve fit function of the python scipy pack-

age (Virtanen et al. 2020). We show an example fit in

Figure 4, where panel (a) shows the turbulence and scat-

tering simulation vdθ(∆t) with cyan circles and line for

100 MeV protons (simulation set 4), respectively, and

the fit to Equation (18) with black dashed curve. In

panel (b) the blue curve shows the number of particles

used as weights for the fitting. As can be seen in panel

(b), the number of 100 MeV protons used in the fit-

ting decays as a function of ∆t, thus, due to weighting,

the low-∆t vdθ(∆t) affect the fit more strongly than the

high-∆t vdθ(∆t).

The drift reduction factors and their standard devia-

tions obtained from the fitting procedure are shown in

the 5th and 6th columns of Table 2. We demonstrate

the dependence of fs on the relative amplitude of turbu-

lence and proton energy in Figures 5 and 6, respectively,

for the B+ polarity.

For comparison, we have also calculated the theo-

retical reduction factors from the models by Bieber &

Matthaeus (1997) and Engelbrecht et al. (2017) using

Equations (10)-(12). The field line diffusion coefficient

and particle cross-field diffusion coefficient required for

these were calculated using the random ballistic decor-

relation (RBD) approach by Ghilea et al. (2011) and

Ruffolo et al. (2012), respectively1. These values are

shown in columns 7 and 8 of Table 2. A comparison of

these drift reduction factors are also shown in Figures 5

and 6. As can be seen, our reduction factor is con-

siderably larger than that predicted by the theoretical

approach, except for high energies and low turbulence

amplitudes.

We note that care should be taken in comparing sim-

ulations with the TGK approach, as the simulation

timescales should be much larger than the decorrelation

timescale τ for TGK to be applicable. We can estimate

the validity of the TGK approach by using the theoret-

ical fs values presented in Table 2, where all fs values

are at or below 0.90. Using Equation (10) fs < 0.90 cor-

responds to τΩ > 3, which, with the (non-relativistic)

gyrofrequency at 1 au being Ω = 0.49 s−1 for our simu-

lations corresponds to τ ≈ 6 s. As we exclude particles

with ∆t < 100 s from our analysis, we can conclude that

for all our simulations ∆t ≫ τ , and the TGK approach

is valid.

We show also the drift reduction coefficients obtained

from full-orbit particle simulations by Minnie et al.

1 Note that the reduction factor of Engelbrecht et al. (2017) de-
pends strongly on the choice of the theory used to calculate the
perpendicular diffusion coefficient, see van den Berg et al. (2021).
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Table 2. Drift reduction factors and their standard devia-
tions obtained from the simulations (columns 3 and 4), and
calculated with the turbulence and particle parameters us-
ing the Bieber & Matthaeus (1997, Bie1997) (column 5) and
Engelbrecht et al. (2017, Eng2017) (column 6) models. The
first column identifies the simulation set used in Table 1,
the second the ratio of the particle’s Larmor radius and the
breakpoint scale of the slab component of the turbulence,
rL/lb∥. All quantities are calculated at 1 au heliocentric dis-
tance.

Set rL/lb∥ fs σfs fs Bie1997 fs Eng2017

1 0.0199 0.21 0.13 0.010 0.045

2 0.0199 0.26 0.13 0.010 0.045

3 0.0643 0.91 0.048 0.25 0.90

4 0.0643 0.66 0.052 0.099 0.29

5 0.0643 0.23 0.042 0.032 0.015

6 0.0643 0.71 0.03 0.099 0.29

7 0.245 0.92 0.019 0.61 0.83

8 0.245 0.92 0.021 0.61 0.83

(2007) and Tautz & Shalchi (2012) who give the energy

of particles in terms of rL/lb∥, where lb∥ is the largest

scale of the inertial scale of the slab spectrum, which

for our turbulence model is lb∥ = 0.27 au at r = 1 au

(Laitinen et al. 2023a). Minnie et al. (2007) used values

rL/lb∥ = 0.1 and 1, which correspond to proton energies

227 and 6040 MeV, whereas Tautz & Shalchi (2012) only

used rL/lb∥ = 0.1. We give rL/lb∥ for our simulations in

column 3 of Table 2. As can be seen in Figure 5, the de-

pendence of our drift reduction factor on the turbulence

amplitude is similar to that obtained by Minnie et al.

(2007) and Tautz & Shalchi (2012). The dependence of

our drift on energy differs more significantly particularly

from the Tautz & Shalchi (2012) result (Figure 6), how-

ever this can be explained by the fact that the relative
turbulence variance dB2/B2 is 1 in their work, whereas

our simulations in Figure 6 have dB2/B2 = 0.6 at 1 au.

By estimating the effect of the turbulence amplitude on

fs in Figure 5, it is clear that reducing the turbulence

amplitude in the Minnie and Tautz simulations would

increase fs considerably.

Thus, we can conclude that our simulations are well

in line with the previous simulation work. It should be

noted though that our, Minnie et al. (2007) and Tautz &

Shalchi (2012) simulations are not directly comparable,

as the particle and turbulence parameters in the stud-

ies are different, and we use heliospheric magnetic field

whereas the Minnie et al. (2007) and Tautz & Shalchi

(2012) use constant background magnetic field. We dis-

cuss these issues further in Section 4.

10 1 100 101

dB2/B2 (1 au)
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0.4

0.6

0.8

1.0

f s

sim
Min2007
Tau2012
Eng2017
Bie1997

Figure 5. Drift reduction factor for 100 MeV protons as a
function of relative turbulence variance, from our simulations
(black diamonds) and for the models by Bieber & Matthaeus
(1997) (dashed curves) and Engelbrecht et al. (2017) (dot-
ted curves). The red circles and blue squares are from the
Minnie et al. (2007) and Tautz & Shalchi (2012) simulations,
respectively, with rL/λb∥ = 0.1, corresponding to proton en-
ergy 227 MeV.
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Figure 6. Drift reduction factor for turbulence amplitude
dB2/B2 = 0.6 at 1 au, as a function of proton energy,
from our simulations (black diamonds) and for Bieber &
Matthaeus (1997) (dashed curves) and Engelbrecht et al.
(2017) (dotted curves) theoretical models. The red circles
and blue squares are from the Minnie et al. (2007) and Tautz
& Shalchi (2012) simulations, respectively, with dB2/B2 = 1.
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4. DISCUSSION

In this work we have investigated the effect of tur-

bulence on large-scale guiding centre drifts of SEPs by

using full-orbit test particle simulations. We presented

a methodology to evaluate the drift in latitude in tur-

bulent heliospheric simulations, and compared it with

simulations not including turbulence. We derived the

reduction factor of large-scale drifts in heliospheric mag-

netic field by comparing two sets of simulations: The

turbulent simulations where the Parker spiral magnetic

field was overlaid by composite turbulent magnetic field

as described by Laitinen et al. (2023a), and scatter sim-

ulations where the particles propagate in the Parker

spiral and experience ad-hoc scattering (Marsh et al.

2013). Our results indicate that turbulence does re-

duce the large-scale drifts of cosmic rays in the inner

heliosphere, particularly at lower energies. The 10 MeV

proton drift was reduced to 21% of the non-turbulent

drifts (fs = 0.21) for moderate interplanetary turbu-

lence conditions (B+polarity), whereas for higher en-

ergies, 100 and 1000 MeV, the drift reduction coeffi-

cients are 0.66 and 0.92, respectively. The drift reduc-

tion also depended strongly on the relative amplitude

of turbulence: increasing turbulence from the level of

dB2/B2 = 0.2 to 2 (as defined at 1 au heliocentric dis-

tance), the reduction factor fs for 100 MeV protons de-

creased from 0.91 to 0.23.

We also compared our results to earlier work on drift

reduction. Before delving into details of the comparison,

it should be noted that our work differs from previous

work in two important aspects. First, our magnetic field

is not constant but varies in colatitude and in radial dis-

tance. Thus, the theoretical drift velocity of the parti-

cles varies depending on the location of the particles.

Secondly, the turbulence model parameters, such as the

spectral shape, amplitude and the turbulence geometry,

differs between our and previous work.

Let us first consider the spatial variation of the mag-

netic field. Most previous modelling work concen-

trated on investigating the drift reduction using full-

orbit simulations of particles in homogeneous, constant-

background magnetic field (e.g. Giacalone et al. 1999;

Candia & Roulet 2004; Tautz & Shalchi 2012). In this

configuration, there are no macroscopic drifts as there

are no macroscopic gradients and curvatures in the mag-

netic field. Rather than analysing a macroscopic drift of

particles across the mean field, these works have inves-

tigated the quantity ⟨vi∆rj⟩, where vj and ∆ri are ve-

locity and spatial deviation components i and j normal

to the background magnetic field, respectively, which

equals the diffusion tensor element κij , as given by Gi-

acalone et al. (1999). It is not clear to the authors of this

paper how applicable a drift reduction coefficient calcu-

lated from a theoretical starting point without macro-

scopic drifts is when macroscopic drifts are present.

The only work known to us that does investigate drifts

using full-orbit simulations in non-homogeneous mag-

netic field is Minnie et al. (2007), who introduce a gra-

dient normal to the mean magnetic field. With such a

configuration, they were able to quantify the drift ve-

locity and its dependence on turbulence amplitude and

particle energy. Unfortunately, they only investigate two

particle energies, parameterised by the ratio of the parti-

cle Larmor radius and the slab breakpoint scale, rL/λb∥.

For those values, at dB2/B2 = 1, their drift reduction

coefficients as defined from the drift velocity in their

simulations are 0.33 and 0.85 for rL/λb∥ = 0.1 and 1,

respectively. It is interesting to note that inclusion of

the gradient in Minnie et al. (2007) does not seem to

affect the drift coefficient calculated with ⟨vi∆rj⟩, as

shown in their Figures 4 and 5.

The second issue to note is the differences in turbu-

lence spectra used by the various simulation studies. As

discussed above, the ratio between the parallel and per-

pendicular scales, as well as spectral shapes, are dif-

ferent in our and Minnie et al. (2007) studies. Drift

reduction simulation studies have used a variety of tur-

bulence parameters and models: Giacalone et al. (1999)

and Candia & Roulet (2004) consider isotropic turbu-

lence, whereas Tautz & Shalchi (2012) investigates the

drift reduction for slab, 2D, composite and isotropic tur-

bulence, however for lsl = l2D and different slab/2D en-

ergy ratio for their composite model than Minnie et al.

(2007) and our study. Further, they only sample dif-

ferent energies for the isotropic case. The lack of full

sampling of the parameter space is a common short-

coming of all these studies, most likely due to the sim-

ulations being very time-consuming. In particular the

energy-dependence of the drift reduction has not been

well-covered by the simulation studies for the case of the

composite turbulence, as can be seen in Figure 6.

Thus, it is very difficult to draw conclusions from the

earlier studies of drift reduction, particularly when it

comes to the energy dependence of the drift reduction.

Burger & Visser (2010) derive a parametrised form of

the drift reduction coefficient to be used in GCR modu-

lation models using the Minnie et al. (2007) results, how-

ever they are limited with the two energies included in

that study. The theoretical model by Engelbrecht et al.

(2017) shows an improved fit to the Minnie et al. (2007)

results, as compared to Bieber & Matthaeus (1997),

however as shown by van den Berg et al. (2021), the

drift coefficient depends very strongly on which theory
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is used to derive the perpendicular diffusion coefficient,

used in the Engelbrecht et al. (2017) approach.

A recent study by Engelbrecht et al. (2022) showed

that the RBD model used in this paper results in larger

particle perpendicular mean free paths in the heliosphere

than the field-line random walk (FLRW Jokipii 1966)

and non-linear guiding center (NLGC Matthaeus et al.

2003) theories: thus our choice to use RBD for the drift

reduction coefficient with the Engelbrecht et al. (2017)

approach (Equation (12)) would result in smaller fs.

However, comparison of the relative magnitudes of the

RBD, FLRW and NLGC perpendicular mean free paths

is not trivial: in Matthaeus et al. (2003), the FLRW

mean free path was than the NLGC one, and Ruffolo

et al. (2012) found NLGC mean free path to be larger

than the RBD one, both unlike similar comparisons in

Engelbrecht et al. (2022). We believe this may be related

to other parameters used in the above mentioned stud-

ies, in particular the spectral shape of the turbulence

components. For example, the approach of Engelbrecht

et al. (2017) that uses the NLGC theory can be shown to

have a τΩ ∝ (lsl/l2D)
2/3

dependence: thus, the different

values of this parameter, for example lsl/l2D = 10 for

Engelbrecht et al. (2017), 2 in our study, and 1 in Ruf-

folo et al. (2012), may result in significant differences in

the drift reduction factor. Further investigation on the

sensitivity of the different perpendicular particle diffu-

sion theories on different parameters is beyond the scope

of this paper.

Our results demonstrate a sharp contrast to the pre-

dictions of the Bieber & Matthaeus (1997) and Engel-

brecht et al. (2017) results. At high energies, these pre-

dictions are similar to our results, however the energy

dependence of our drift reduction factor is significantly

weaker than that predicted by theoretical models based

on field line or particle cross-field diffusion coefficients.

It is quite possible that the issue is related to how the

particle Larmor radius relates to perpendicular and par-

allel turbulence scales as discussed above. We will inves-

tigate this further in a forthcoming paper. An upcom-

ing development is also to include the convective electric

field E = −vsw ×B, where vsw is the solar wind veloc-

ity, in our model. This will enable us to address drifts

in longitude, for which the E×B drift is significant (e.g.

Burns & Halpern 1968; Dalla et al. 2013).

5. CONCLUSIONS

We have investigated the effect of magnetic field tur-

bulence on the large-scale drifts present in the helio-

spheric magnetic field. As discussed in previous work,

turbulence tends to reduce the amount of drift, and this

has been characterised via a drift reduction coefficient

fs, which depends on particle properties such as energy

and charge-to-mass ratio, and turbulence characteris-

tics. Using test-particle full-orbit simulations, we have

for the first time analysed the drift reduction due to

turbulence in a heliospheric context, using our analytic

heliospheric turbulence model (Laitinen et al. 2023a).

We found that

• The drift reduction coefficient of protons is energy-

dependent, with fs = 0.2 for 10 MeV proton in

moderate turbulence with dB2/B2 = 0.6 at 1 au

heliocentric distance. At higher energies, 100 MeV

and 1000 MeV, the reduction is fs = 0.7 and 0.9,

respectively.

• Stronger turbulence, with dB2/B2 = 2, gives

rise to stronger drift reduction, with fs = 0.2

for 100 MeV protons, whereas for weaker turbu-

lence, dB2/B2 = 0.2 the reduction is small, with

fs = 0.9.

• Our values of the drift reduction coefficient are

similar to those obtained by simulations in con-

stant magnetic field by Minnie et al. (2007) and

Tautz & Shalchi (2012). However, care should be

taken with the comparison as the turbulence and

background models differ significantly.

• According to our simulations, the drift reduction

is significantly weaker than that proposed by theo-

retical models by Bieber & Matthaeus (1997) and

Engelbrecht et al. (2017), particularly at lower en-

ergies.

Thus, we find that while the turbulence does re-

duce the macroscopic drift in the IMF, the strong re-

duction predicted by theoretical approaches (Bieber &

Matthaeus 1997; Engelbrecht et al. 2017; van den Berg

et al. 2021), particularly at lower energies is not sup-

ported by our simulations. Thus, we expect that the ef-

fects of drifts on SEPs remain significant at large ion en-

ergies (e.g. > 100 MeV protons), particularly for heavier

elements which have larger Larmor radii.
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APPENDIX

A. TURBULENCE PARAMETERS

Our simulations use the same turbulence parameters as Laitinen et al. (2023a), aside from the turbulence amplitude

which is varied, as given in column 7 of Table 1. The other parameters are briefly presented here for the reader’s

convenience.

The turbulence generation is based on a superposition of Fourier modes logarithmically equispaced in wave number

k, using the approach by (Giacalone & Jokipii 1999). We use a 2D-slab composite model with separate spectra for 2D

(k⊥) and slab (k∥) components, with the power in the two components divided as 80%:20%. The power spectra consists

of a large-scale kp component, with p = 0, at wavenumbers below the breakpoint scales lc⊥ and lc∥, respectively (note

that we use lc here instead of λc which was used by (Laitinen et al. 2023a), in order to avoid confusion with the parallel

scattering mean free path λ∥). At higher wavenumbers, we use Kolmogorov spectrum with power law index 8/3 and

5/3 for the 2D and slab components respectively. The breakpoint scales are defined as lc⊥ = 0.04 (r/r⊙)
0.8 r⊙, where

r is the heliocentric distance and r⊙ is the solar radius, and lc∥ = 2lc⊥. Finally, the total amplitude of the turbulence,

δB, varies with location as δB2 ∝ r−3.3, with δB2/B2 = 0.03 at r⊙, where B is the background magnetic field given

by Equation (13).

For further information about the parameters, their sources, and how they are used in the model, we refer the reader

to the full description of the model in Laitinen et al. (2023a).

B. THEORETICAL DRIFT VELOCITY AT 1 AU

10 2 10 1 100 101 102

r [au]

10 1

100

101

102

v d
,t

he
or

 [k
m

/s
]

(a)

10 2 10 1 100 101 102

r [au]

100

101

t
[

/4
8h

]

(b)

Figure 7. The theoretical drift velocity in heliolatitude, vdθ,theor, of 100 MeV protons in units of (a) km/s and (b) ◦/48 h, as a
function of heliocentric distance in the heliospheric equatorial plane, for the solar wind speed and Parker spiral magnetic field
strength used in this study.

The pitch-angle dependent drift velocity in colatitude due to magnetic field gradient and curvature in Parker spiral

is given by Dalla et al. (2013) as

vdθ,theor = A
γm

q

(
1

2
v2⊥ + v2∥

)
f(r, θ) (B1)

where

f(r, θ) =
a

B0r20

x2(x2 + 2)

(x2 + 1)2
(B2)
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with x = r/a(θ) and a(θ) = vsw/(Ω sin θ), and A is the sign of the Parker spiral magnetic field, as in Equation (13).

Note that Dalla et al. (2013) show the drift rate in latitude rather than colatitude, hence their sign of vdθ is opposite

to ours. Our model is also unipolar unlike the Dalla et al. (2013) who used bipolar magnetic field, hence we do not

incorporate the change of the sign of the drift velocity at the equator, sgn
(
π
2 − θ

)
in Equation (B1).

To evaluate the representative value of the drift velocity, we average Equation (B1) over the particle velocity dis-

tribution, assuming an isotropic pitch angle distribution. The isotropy assumption is justified by the fact that for

our simulation cases, the scattering time scale at 1 au has values between ∼ 500 and 2000 seconds, which are short

compared to the timescales relevant to the determination of the drift velocity. Following the pitch-angle averaging,

the terms in the parentheses in Equation (B1) become

1

2
v2⊥ + v2∥ =

2

3
v2.

In our simulations, we characterise the Parker spiral with solar wind speed vsw = 400 km s−1. Further, our region of

interest is at the solar equator, with θ = 90◦, for which the factor

f(r, θ) =
aeq
B0

r2

r20

r2 + 2a2eq
(r2 + a2eq)

2

where aeq = a(θ = 90◦) ≈ 0.93 au, and the drift velocity

vdθ,theor =
2

3
Aa rL0 v

r2

r20

r2 + 2a2eq
(r2 + a2eq)

2
. (B3)

where rL0 is the particle Larmor radius at magnetic field of B0. This can also be written in terms of the Larmor radius

of the particle at 1 au as

vdθ,theor =
2

3
ArL v

r2 + 2a2eq
(r2 + a2eq)

3/2
, (B4)

Using this vdθ,theor, the deviation in colatitude in the time interval ∆t, at distance r, would be expected to be

∆θ =
vdθ∆t

r
. (B5)

We demonstrate this in Figure 7, where panel (a) shows the theoretical drift velocity in km/s, and panel (b) in angular

units, for the parameters shown in this study.

It is important to note that in our simulations the particle’s location will have deviated from r = 1 au between its

first and last crossing of the 1-au sphere. As discussed in Dalla et al. (2013) and shown in Figure 7 (a), the theoretical

drift velocity due to curvature and gradient tends towards a constant value at large distances, r ≫ a. Thus, as a

consequence r in the denominator of Equation (B5), the deviation in colatitude, for a given ∆t, decreases at small

and large heliocentric distances, as shown in Figure 7 (b). Therefore, a particle that propagates at a wide range of

heliocentric distances between its first and last crossing of the 1 au sphere will have drifted with smaller (angular)

drift velocity on average than a particle that would have remained at 1 au.

For this reason, the drift velocity defined in Equation (16) can be expected to be smaller than vdθ,theor for a particle

that has propagated to small or large heliospheric distances before returning to 1 au.
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